Oil Spills or Look-Alikes? Classification Rank of Surface Ocean Slick Signatures in Satellite Data

نویسندگان

چکیده

Linear discriminant analysis (LDA) is a mathematically robust multivariate data approach that sometimes used for surface oil slick signature classification. Our goal to rank the effectiveness of LDAs differentiate spills from look-alike slicks. We explored multiple combinations (i) variables (size information, Meteorological-Oceanographic (metoc), geo-location parameters) and (ii) transformations (non-transformed, cube root, log10). Active passive satellite-based measurements RADARSAT, QuikSCAT, AVHRR, SeaWiFS, MODIS were used. Results two experiments are reported discussed: an investigation 60 several attributes subjected same transformation survey 54 other three selected different transformations. In Experiment 1, best discrimination was reached using ten cube-transformed attributes: ~85% overall accuracy six pieces size metoc variables, one parameter. 2, tied as most effective: ~81% area (log transformed), length-to-width ratio (log- or cube-transformed), number feature parts (non-transformed). After verifying classification 114 algorithms by comparing with expert interpretations, we concluded applying accounting optimizes accuracies binary classifiers (oil spill vs. slicks) simple LDA technique.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison between Mahalanobis classification and neural network for oil spill detection using RADARSAT-1 SAR data

Oil spill or leakage into waterways and ocean spreads very rapidly due to the action of wind and currents. The study of the behavior and movement of these oil spills in sea had become imperative in describing a suitable management plan for mitigating the adverse impacts arising from such accidents. But the inherent difficulty of discriminating between oil spills and lookalikes is a main challen...

متن کامل

Experimental L-Band Airborne SAR for Oil Spill Response at Sea and in Coastal Waters

Satellite synthetic aperture radar (SAR) is frequently used during oil spill response efforts to identify oil slick extent, but suffers from the major disadvantages of potential long latency between when a spill occurs and when a satellite can image the site and an inability to continuously track the spill as it develops. We show using data acquired with the Uninhabited Aerial Vehicle SAR (UAVS...

متن کامل

Satellite observations of oil spills in Bohai Sea

Several oil spills occurred at two oil platforms in Bohai Sea, China on June 4 and 17, 2011. The oil spills were subsequently imaged by different types of satellite sensors including SAR (Synthetic Aperture Radar), Chinese HJ-1-B CCD and NOAA MODIS. In order to detect the oil spills more accurately, images of the former three sensors were used in this study. Oil spills were detected using the s...

متن کامل

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

Automatic identification of oil spills on satellite images

A fully automated system for the identification of possible oil spills present on Synthetic Aperture Radar (SAR) satellite images based on artificial intelligence fuzzy logic has been developed. Oil spills are recognized by experts as dark patterns of characteristic shape, in particular context. The system analyzes the satellite images and assigns the probability of a dark image shape to be an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2021

ISSN: ['2072-4292']

DOI: https://doi.org/10.3390/rs13173466